首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19849篇
  免费   1543篇
  国内免费   1193篇
电工技术   569篇
技术理论   1篇
综合类   2257篇
化学工业   1322篇
金属工艺   258篇
机械仪表   889篇
建筑科学   1713篇
矿业工程   355篇
能源动力   680篇
轻工业   421篇
水利工程   460篇
石油天然气   276篇
武器工业   75篇
无线电   1039篇
一般工业技术   2176篇
冶金工业   791篇
原子能技术   134篇
自动化技术   9169篇
  2024年   21篇
  2023年   137篇
  2022年   238篇
  2021年   292篇
  2020年   441篇
  2019年   441篇
  2018年   419篇
  2017年   562篇
  2016年   683篇
  2015年   726篇
  2014年   1368篇
  2013年   1350篇
  2012年   1408篇
  2011年   1472篇
  2010年   1159篇
  2009年   1426篇
  2008年   1386篇
  2007年   1379篇
  2006年   1208篇
  2005年   1060篇
  2004年   804篇
  2003年   768篇
  2002年   577篇
  2001年   516篇
  2000年   414篇
  1999年   355篇
  1998年   302篇
  1997年   222篇
  1996年   187篇
  1995年   179篇
  1994年   174篇
  1993年   132篇
  1992年   113篇
  1991年   95篇
  1990年   86篇
  1989年   93篇
  1988年   76篇
  1987年   37篇
  1986年   32篇
  1985年   34篇
  1984年   18篇
  1983年   21篇
  1982年   19篇
  1981年   17篇
  1980年   17篇
  1979年   18篇
  1975年   8篇
  1964年   8篇
  1963年   9篇
  1961年   8篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
Floating treatment wetlands (FTWs) use plants’ roots for water quality improvement. The plants are supported by a buoyant structure deployed at the water surface. The roots form a porous zone beneath the structure and remove pollutants carried in suspension through filtering, absorption and uptake. This paper used CFD simulation to model FTWs arranged in series and spanning the channel width and to study the effects of root length and spacing between FTWs on flow distribution and mass removal. The root zone was modelled as a porous media, and removal was computed using first-order decay, for which a range of removal constants was tested. Longer roots increased the reactive volume of the root zone, which increased the fraction of pollutant inflow entering the FTWs. Increasing the distance between FTWs allowed greater mixing between water that went through and beneath the upstream FTW. This increased the concentration entering each FTW, which enhanced mass removal per FTW. However, a larger distance between FTWs reduced the number of FTWs in the channel, reducing the reactive volume. In the tradeoff between mixing and reactive volume, the reactive volume was more important, such that total removal in the channel increased with longer roots and more units of FTW (shorter gap distance). However, removing the gap entirely was detrimental, as FTWs in series removed more mass than a continuous FTW of same volume. This study points to two design recommendations for FTWs in series. First, if resources for building FTWs are not limiting, but the channel length is, it is preferable to prioritize higher reactive volume (shorter gap distance) to achieve maximum removal per channel length. Second, if resources for FTWs are limiting, but channel length is not, it is better to place the FTWs with a longer gap distance, preferably along enough to allow mixing over the full depth between FTWs, as this will achieve maximum removal per FTW.  相似文献   
2.
Many attempts have been made to improve mass transfer by reducing the size of reactors. However, such reduction will fairly quickly reach practical limitations and numerous difficulties still remain. Catalytic washcoat shape and properties may be critical design factors, but the mechanisms for their effects on mass transfer characteristics are still not fully understood. To effectively eliminate problems associated with mass transport phenomena in microstructured steam-methanol reformers, the effects of washcoat shape and properties were investigated in various situations by performing computational fluid dynamics simulations. The dependence of the solution on mass transfer characteristics was reduced to a small number of dimensionless parameters. A dimensionless mass transfer analysis was carried out in terms of the Sherwood, Schmidt, and pore Reynolds numbers. The results indicated that the rate of mass transfer is predominantly controlled by washcoat properties, and porosity and effective thermal conductivity are fundamentally important. The rate of the reforming reaction is typically controlled by kinetics at a temperature of 480 K and limited by mass transfer at a temperature of 580 K. The shape of washcoats affects the overall mass transfer characteristics, depending on the structural and thermal properties of washcoats. The shape effect is limited by heat transfer. A three-fold increase in effectiveness factor can be achieved by increasing the effective thermal conductivity of the washcoat. Design recommendations were finally made to improve transport characteristics for the systems.  相似文献   
3.
The capture of particles by charged droplets was simulated by considering the electrostatic interactions of droplet-droplet and droplet-particle. The results indicate that the electrostatic repulsion between droplets leads to a dynamic accumulation mode of particles. However, the droplet spacing has an insignificant effect on the capture efficiency when the electrostatic deposition predominates. The increase of droplet charge remarkably improves the capture efficiency, in which the capture of fine particles accounts for the largest proportion. Compared to the droplet charge, the droplet size shows a limited improvement in the capture efficiency. Reducing the droplet velocity prolongs the capture time instead of enhancing the capture capacity per unit time, thereby improving capture efficiency.  相似文献   
4.
Here we design a novel multi-principal element carbide system (Ti,Zr,Hf,W)C with a miscibility gap using computational tools and report on the formation of a single-phase (Ti,Zr,Hf,W)C after spark plasma sintering. The (Ti,Zr,Hf,W)C shows high nanohardness (32.7 GPa) and fracture toughness (5 MPa·m1/2). Aging studies at 1350 °C for 100 h show that the single-phase carbide solid solution is quite stable even though this temperature is within the predicted miscibility gap of the system. Detailed electron microscopy characterization shows that phase separation has initiated with minor decomposition after aging by forming rock-salt (Ti,W)C- and (Zr,Hf)C-rich phases as well as hexagonal WC precipitates. We show that the (Ti,W)C- and (Zr,Hf)C-rich phases form a lamellar structure upon aging and the interlamellar spacing is considerably coarser than what has been previously found for the binary (Ti,Zr)C system. The decomposition kinetics, on the other hand, is sluggish due to the reduced driving force for phase decomposition.  相似文献   
5.
《Ceramics International》2022,48(12):16923-16932
This paper offers a new way of testing the ablation property of material under an oxyacetylene torch using a thin-blade specimen, which costs much less time to reach the maximum temperature and provides a harsh turbulence fluid field that's closer to reality. The thin-blade specimen experiences a higher turbulent intensity than the traditional disk-like specimen, leading to more efficient heat exchange. The fluid field simulation agrees with the testing results. In addition, we manage to synthesize the C/Cx-SiCy composites with the co-deposition chemical vapor infiltration (CVI) method. The C/Cx-SiCy composites exhibit a similar anti-ablation property as C/C composites and consist of enough SiC phase simultaneously, combining the advantages of both C/C composites and C/SiC composites. The thin-blade C/Cx-SiCy composites show a lower linear ablation rate (1.6 μm/s) than C/C composites (4.1 μm/s) and C/SiC composites (19.6 μm/s) during the oxyacetylene test. The glass layer formed on the surface of C/Cx-SiCy could cling to the bulk material instead of peeling off due to the high PyC content in the matrix could protect the SiO2 from blowing away.  相似文献   
6.
针对货运车辆在配送调度过程中产生大量碳排放的问题,建立模型将多种影响碳排放量的因素协同优化。模型中考虑了不同载重量的异质车队,两个节点之间有多条道路的柔性路径,以及车辆重量随卸货而减少的动态负载等因素,以碳排放量、行驶时间和行驶路程为优化目标,并加入了节点需求时间窗、根据速度变化划分路段、交接和卸货时间的约束。提出了一种混合蚁群算法,利用蚁群算法信息素强度更新方式保持群体记忆性,利用粒子群算法的快速收敛特性增加计算效率。通过随机数值算例的仿真优化与对比分析,验证了算法和模型的有效性。  相似文献   
7.
This paper presents a control design for the one‐phase Stefan problem under actuator delay via a backstepping method. The Stefan problem represents a liquid‐solid phase change phenomenon which describes the time evolution of a material's temperature profile and the interface position. The actuator delay is modeled by a first‐order hyperbolic partial differential equation (PDE), resulting in a cascaded transport‐diffusion PDE system defined on a time‐varying spatial domain described by an ordinary differential equation (ODE). Two nonlinear backstepping transformations are utilized for the control design. The setpoint restriction is given to guarantee a physical constraint on the proposed controller for the melting process. This constraint ensures the exponential convergence of the moving interface to a setpoint and the exponential stability of the temperature equilibrium profile and the delayed controller in the norm. Furthermore, robustness analysis with respect to the delay mismatch between the plant and the controller is studied, which provides analogous results to the exact compensation by restricting the control gain.  相似文献   
8.
The airline industry is a representative industry with high cost and low profitability. Therefore, airlines should carefully plan their schedules to ensure that overall profit is maximized. We review the literature on airline planning and scheduling and focus on mathematical formulations and solution methodologies. Our research framework is anchored on three major problems in the airline scheduling, namely, fleet assignment, aircraft routing, and crew scheduling. General formulation, widely used solution approaches, and important extensions are presented for each problem and integrated problems. We conclude the review by identifying promising areas for further research.  相似文献   
9.
This paper presents the results of numerical and experimental performance evaluation of the rotary tubular spool valve. The aim of this work is to develop further the novel design of the tubular spool valve by confirming experimentally the validity of the simulation model and its results, thereby proving the valve's potential to represent a feasible and more efficient alternative to conventionally used translation spool valves avoiding the use of two stage valve configurations. In this research the valve performance is assessed through numerical modelling and experimental studies of its metering characteristic and pressure losses. This paper demonstrates that the used valve model yields the results, which agree well with the conducted experimental study. Therefore, validation of the numerical model and the modelling results in the form of theoretical valve characteristics was accomplished. Firstly, the paper presents details of a numerical approach employed to evaluate valve performance and then analyzes the simulation results. Next, the valve performance is experimentally validated by testing a prototype valve on a hydraulic test rig capable of measuring the volume flow rate, pressure levels in up- and downstream lines of the valve across the entire spool angular stroke. Initially, average discrepancies between modelling and test results were 52.46% for the metering and 82.78% for the pressure loss characteristics. Correcting the model geometry aimed at eliminating differences between the valve model and the practically used prototype-test rig system enabled reduction of the error between experiment and modelling by 47.75% for the pressure loss function. This confirmed validity of the simulated characteristics of the valve. The benchmark comparison of pressure losses confirmed average 71.66% energy dissipation reduction compared to the industry-available analogue valve.  相似文献   
10.
万冬 《石化技术》2020,(4):31-31,54
在埋地管道研究工作中,关于其腐蚀的防护一直是研究的焦点问题,但现阶段常用的防护手段多为防腐层与阴极防护。为此,在文中主要对二者的保护措施展开了相应地阐述,并重点分析了2种保护手段存在的问题,旨在为后续的管道防腐研究提供相应的参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号